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In terrestrial landscapes, the spectral variability hypothesis (SVH) enables estimation of species diversity from
satellite data, thereby allowing biodiversity assessments to be upscaled. Whether the SVH works in the marine
realm is an open question. To answer it, we tested the ability of this hypothesis to retrieve coral reef fish
biodiversity from two remote sensing platforms on a global transect of reef sites. From orbit, we trialed the
multispectral and panchromatic bands of WorldView-2 (WV-2) which have a spatial resolution of 2.5 and 0.5 m,
respectively. At 100 times finer resolution, we repeated the experiment using unpiloted aerial vehicle (UAV)
data. Encouragingly, the SVH evidently works as well in water as has been reported on land. Spectral variability
was positively correlated with fish diversity for all sensors, though the area in which the variability was
computed (window size) was important. The strongest relationship between spectral variability and fish biodi-
versity (R = 0.48) was returned using UAV imagery corrected for surface artifacts via fluid lensing. Splitting fish
into herbivores, corallivores, and piscivores revealed that different feeding strategies correlate to spectral vari-
ability at different scales. Based on our results, we contend that remote sensing data are underutilized when used

to simply map benthic habitat. Spectral variation can clearly serve as a proxy for in situ reef biodiversity.

1. Introduction

Ecological theory contends that structural complexity promotes
species diversity through niche generation (MacArthur and MacArthur
1961; Brown 1984; McElhinny et al. 2005; Stein et al. 2014). Tree cover
and grassland patchiness, which affect bird species (Goetz et al. 2007;
Lengyel et al. 2016), serve as excellent examples, as does seabed
roughness mediating reef fish biodiversity (Gratwicke and Speight 2005;
Purkis and Kohler 2008; Purkis et al. 2008; Graham and Nash 2013).
Reef complexity also promotes resilience (Alvarez-Filip et al. 2009;
Rogers et al. 2015; Yanovski et al. 2017), a sliver of hope against un-
mitigated ecosystem collapse induced by bleaching, ocean acidification,
and a myriad of other local and global anthropogenic insults (Syms and
Jones 1998; Alvarez-Filip et al. 2009; Wilson et al. 2010; Riegl et al.
2012; Rogers et al. 2014).

Because coral reefs are vast and submerged, traditional in situ mea-
surements of biodiversity are expensive and limited in spatial extent,
requiring extensive SCUBA diver-based surveys. Remote sensing offers a
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complementary way to indirectly, but efficiently, survey biodiversity at
scale. The spectral variation hypothesis (hereafter ‘SVH’; Palmer et al.,
1999) contends the spatial arrangement of organisms to be positively
correlated with remotely sensed spectral variation (MacArthur and
MacArthur, 1961; Palmer et al., 1999, 2002). This hypothesis has been
used to audit species diversity in tropical forests (Carlson et al. 2007),
wetlands (Heumann et al. 2015; Rocchini et al. 2017), grasslands
(Rocchini et al., 2004, 2007, 2014; Hall et al., 2010, 2012), and, more
recently, arctic tundra and boreal ecosystems (McPartland et al. 2019;
Putkiranta et al. 2024). These authors have contributed to the validation
of SVH over multiple spatial (10’s to 10,000’s of sq. m) and spectral
(multispectral vs. hyperspectral) scales, focusing only on land plants. On
reefs, spectral variation has been used to detect coral bleaching
(Rowlands et al. 2008; Collin and Planes 2012; Li et al. 2020) and
abundance of acroporid corals (Purkis et al. 2006), but not to measure
biodiversity.

As the portfolio of studies that leverage the SVH grow, the debate
continues as to the optimum metric of species diversity (Oldeland et al.
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2010; i.e., abundance vs. count metrics), the appropriate scale to mea-
sure it at (Rocchini et al. 2007; Oldeland et al. 2010; Torresani et al.
2018; Gholizadeh et al. 2022; Pacheco-Labrador et al. 2022), and which
ecosystems are well poised for the application of this hypothesis
(Schmidtlein and Fassnacht 2017; Hauser et al. 2021; Fassnacht et al.
2022; Rossi et al. 2022; Torresani et al., 2024). Reef fish make for a
compelling case study. They are pivotal to overall coral ecosystem
health (Diaz-Pérez et al. 2016) and a critical source of protein for >one
billion people (Kawarazuka and Béné 2011; Beveridge et al. 2013). In an
effort to amplify the use of remote sensing for marine conservation, we
aimed to test the SVH as a predictor of reef fish. We believed our work to
be the first to use spectral variability as a reef ecosystem indicator.
Though an imperfect comparison because they did not directly employ
the SVH, the study by Cox et al. (2021) was noteworthy in its demon-
stration that fish diversity was correlated with the hue from photographs
of corals. While the results from those authors were compelling, it
remained to be tested whether remotely sensed imagery, as opposed to
underwater images, could be used to assess fish diversity. Building for-
ward from this, and the work in the terrestrial realm, we evaluated the
SVH from two remote sensing platforms — at cm-scale from an unpiloted
aerial vehicle (UAV) and at meter-scale from satellite. Our study was
conducted on reefs distributed along a global transect spanning the
Atlantic, Pacific, and Indian Oceans.

We pursued two aims. First, we tested whether the SVH can audit
reef fish diversity. If it can, remote sensing has a role beyond simple
habitat mapping in reef conservation. Satellites and drones could then
also be used to audit ecosystem dynamics at scale. Our second aim was
to identify the optimum spatial scales to lever the SVH. Due to its high
spatial resolution and mode of acquisition, our UAV data allowed us to
examine scale. We processed these data using ‘fluid lensing’ to remove
spectral artifacts related to the sea surface, water column, and their ef-
fect on the underwater light field. This technology leveraged the
distortion created by the ocean surface to magnify the seafloor, deliv-
ering imagery of unrivalled fidelity (Chirayath and Earle 2016; Chir-
ayath and Li 2019). Multiple studies have emphasized reef fish to be
sensitive to small-scale topography, which they used for hiding,
foraging, and reproducing (Purkis et al. 2008; Wedding et al. 2019;
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Fukunaga et al. 2020). Due to this behavior, we expected the strongest
positive relationships between spectral variation and fish diversity to
manifest at fine spatial scales, such as those afforded by fluid lensing.

2. Methods
2.1. A global transect

2.1.1. Global field data from the Living Oceans Foundation

Our study used two fish datasets collected by SCUBA divers. The first
was gathered under the auspices of the Khaled bin Sultan Living Oceans
Foundation Global Reef Expedition, hereafter ‘KSLOF-GRE’ (Purkis et al.
2019), which, between 2012 and 2015, counted fish at 720 stations
across the Pacific, Indian, and Atlantic Oceans. Data were collected from
hardbottom forereef and lagoonal habitats (Global Reef Expedition Final
Report, 2021). The KSLOF-GRE field surveys were completed prior to
the 2016-2017 global mass bleaching event, which negatively impacted
reef fish diversity (Pratchett et al. 2018; Richardson et al. 2018). The 25
stations that had experienced recent local bleaching (degree heating
week [DHW] >8 °C/week and eyewitness accounts) were excluded from
our analysis, delivering a dataset comprised of 695 stations. Therefore,
our work was agnostic to the effects of bleaching on the relationship
between fish and spectral variability.

The KSLOF-GRE data were collected via the census method from
English et al. (1997), where fish species were counted over 15-minute
durations along 30 x 2-m transects. Each transect was conducted at
five water depths (<8 m, 8-13 m, 14-18 m, 19-25 m, and >25 m), each
with a minimum of four replicates. These replicates were averaged
within each depth class, then averaged across the depths at which they
were surveyed to yield a single fish count for each of the 695 stations. A
full description of the KSLOF-GRE fish surveys has been detailed in both
Purkis et al. (2019) and Bakker et al. (2022, 2024).

2.1.2. Tumon Bay field data from the Guam Long-term Coral Reef
Monitoring Program

Our second fish dataset was collected in Tumon Bay as part of the
Guam Long-term Coral Reef Monitoring Program (GLTMP) as part of the
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Fig. 1. Multi-scale remote sensing datasets assembled for Tumon Bay, Guam. One multispectral and one panchromatic scene from WorldView-2 (‘WV-2’) and 12
FluidCam scenes were used to image the 27 Guam Long-term Coral Reef Monitoring Program (‘GLTMP’) stations (orange triangles). The hatched FluidCam scene was

used in Fig. 3 to show the Rao’s Q calculation for each dataset.
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NOAA Coral Reef Conservation Program jurisdictional cooperative
agreement for Guam (Burdick et al. 2023). Here, fish were also counted
on hardbottom habitat, on the outer reef slope terrace, between 7-15 m
water depth. Although the GLTMP extends back to 2010, heat stress
reached a record maximum in Tumon in 2017 (13 DHW), causing coral
bleaching. No significant bleaching was recorded in subsequent years. In
order to not introduce the bias of bleached reefs, we analyzed only the
27 GLTMP stations from 2019 to 2021.

The GLTMP surveyors utilized a stationary point-count method
adapted from Ault et al. (2006) and the NOAA Pacific Islands Fisheries
Science Center (Williams et al. 2011; Heenan et al. 2017) to identify fish
species. Divers were positioned at 7.5 and 22.5 m along a 30-m transect,
and each surveyor recorded all fish observed within a 7.5-m radius
cylinder extending from their position along the transect. Fish were
recorded during a 5-min listing phase, then the divers counted and sized
each taxon during rapid visual sweeps of the plot (Burdick et al. 2023
and University of Guam Marine Laboratory, 2019 for details).

To ensure that the fish counts were consistent between the KSLOF-
GRE and GLTMP surveys, all sharks, rays, eels, and cryptic fish, or fish
<5 cm long, were excluded from both datasets. We further removed all
KSLOF-GRE transects acquired deeper than 15 m (n = 170) because of
the excessive attenuation of the visible-spectrum in our remote sensing
dataset beyond this depth (Purkis and Chirayath 2022). Removing these
deep stations resulted in a total 525 KSLOF-GRE stations, while we kept
all 27 from the GLTMP.

2.2. Quantifying fish diversity

The fish data provided by the KSLOF-GRE and GLTMP allowed us to
calculate diversity metrics related to species richness and evenness.
Richness of fish species was represented by the number of observed
species counted at each diver station, regardless of abundance. This
metric thus placed the same weight on rare species as on dominant ones
and was calculated for all fish from the KSLOF-GRE and GLTMP surveys,
hereafter referred to as ‘fish richness.’

Next, the diversity of fish species was assessed using Shannon’s Index
(Shannon 1948), which weights species based on their frequency.
Shannon’s diversity (H’) was calculated via,

H = —3pln(p) 1)

where p was the proportion of a given fish species per total species for
each diver station. We referred to this metric as ‘Shannon’s diversity of
fish.” We pursued two fish diversity metrics to ascertain which one
afforded the strongest correlation with spectral variation, as has been
done in previous terrestrial SVH studies (i.e., Oldeland et al. 2010).

2.3. Four remote sensing datasets

The first two satellite imagery datasets that we assembled, multi-
spectral and panchromatic WorldView-2 (WV-2), spanned our two
largest spatial scales. WV-2 Standard Level 2A surface reflectance
products were already georeferenced, orthorectified, and radiometri-
cally and atmospherically corrected (DigitalGlobe 2021; Fig. 1). These
imagery boasted eight spectral bands (coastal blue, blue, green, yellow,
red, red edge, and near-infrared 1 and 2) with a spatial resolution of 2.5
m, plus a single panchromatic band with 0.5 m resolution. Of the eight
multispectral bands, we only utilized Bands 1 through 5, which pene-
trate water. All WV-2 scenes were acquired from within eight weeks of
the KSLOF-GRE and GLTMP field survey dates, while maintaining <10
% cloud cover, and look angles <5° off-nadir, so as to minimize sun
glint. These selection criteria delivered 2.5 m multispectral WV-2 im-
agery for 223 KSLOF-GRE stations and for 27 GLTMP stations, plus 0.5 m
WV-2 panchromatic imagery for 112 KSLOF-GRE and 27 GLTMP sta-
tions. The total area of imagery assembled for this project was 99,850 sq.
km.
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While the optical effect of submergence in multispectral satellite
imagery can be addressed using physics-based, semi-analytical, or
empirical approaches (Lyzenga 1978; Lee et al. 1999; Green et al. 2000;
Stumpf et al. 2003; Hedley et al. 2004; Kerr and Purkis 2018; Kutser
et al. 2020), we deliberately chose not to apply such water column
corrections to our WV-2 imagery. This decision was driven by two main
factors. First, the spatial variability of the ocean’s inherent optical
properties made it difficult to scale these correction methods from in-
dividual satellite scenes to global remote sensing efforts. Additional
challenges arise from differences in solar geometry, atmospheric clarity,
and sea state between adjacent images, which complicate large-scale
water column corrections. Given our goal of significantly scaling-up
reef fish biodiversity assessments with remote sensing, we opted not
to burden our deployment of the SVH with this additional image-
processing step. The second reason was central to the SVH itself. The
hypothesis holds predictive power because it serves as a proxy for niche
generation within ecosystems. In this context, variations in water depth
may be considered part of the signal rather than noise to be corrected.
After all, there is compelling evidence that depth variations contribute
to the creation of niches for reef fish (Purkis et al. 2008; Jankowski et al.
2015).

Our third and fourth datasets came from UAV-mounted FluidCam
which utilized fluid lensing of high framerate multispectral imagery to
resolve the seabed at cm-scale (Chirayath and Instrella 2019; Purkis and
Chirayath 2022; Fig. 1). As visible light interacted with the sea surface,
time-dependent nonlinear optical aberrations appear, forming intense
bands of light on the seafloor, termed ‘caustics’, that produce a refrac-
tive lensing which magnifies and demagnifies underwater objects
(Chirayath and Earle 2016). These caustic refractive distortions were
exploited by the fluid lensing process to determine the 3D structure of
the seafloor, to enhance the signal-to-noise ratio of the imagery, and to
increase its effective spatial resolution by magnifying the wave events
on the sea surface. Fluid lensing effectively removed refractive distor-
tion from the ocean waves and produced the third benthic imagery
product that we used for this study. To compliment this high-resolution
product, we also kept the raw UAV imagery as our fourth, and final,
remote sensing dataset. These UAV images have the finest spatial reso-
lution of our assembled data (0.014 m).

Our four remote sensing datasets allowed us to test the SVH with
imagery spanning >two orders of magnitude in spatial resolution
(0.014 m to 2.5 m) and spanning between one and five spectral bands.
The raw UAV imagery further allowed us to assess how fluid lensing
corrections helped or hindered the SVH.

2.4. Spectral variability from Rao’s Q

To calculate the spectral variability of our satellite and UAV imagery,
we used the Rao’s Q metric proposed by Rocchini et al. (2017), as
recently employed by Khare et al. (2019) and Torresani et al. (2019) for
terrestrial forests. Rao’s Q accounted for both the proportion and the
spectral distance of brightness values in an image by,

Q= %ZX}:Z (@~ )] @

where N was the number of pixels in an image, i, j € {1, 2, ..., N} rep-
resented the indices of individual pixels in that image, such that the first
two summations were taken over all possible pairs of pixels, and & was
the reflectance value taken from each band, «, of the WV-2 multispec-
tral, WV-2 panchromatic, and UAV imagery. The Rao’s Q formula which
we used was thus a multidimensional Euclidean distance metric, and
equivalent to the form presented in Rocchini et al. (2017) in the limit
where the dissimilarity coefficient d was equal to the summand in Eq.
(2) and the expression was renormalized so that probability p of sam-
pling any pixel was simply one. Conveniently, the Rao’s Q algorithm was
highly parallelizable and we accordingly developed a program in
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Fig. 2. Map of the (a) 250 dive stations from the KSLOF-GRE (n = 223) and GLTMP (n = 27) stations where SCUBA divers counted fish, and we assembled
WorldView-2 (WV-2) multispectral (circles, triangles, and squares), WV-2 panchromatic (triangles and squares), and FluidCam imagery (triangles only). The KSLOF-
GRE field surveys were completed between 2011-2015 and the GLTMP surveys between 2019-2021. The species richness and Shannon’s diversity of reef fish were
represented from east to west by box-and-whisker plots for the (b) Indian Ocean, (c) Pacific Ocean, and (d) Atlantic Ocean. An individual box represented fish
diversity at the stations from a single island and boxes were colored by the archipelago to which the island belonged. Note lower fish diversity in the Atlantic as

compared to the Pacific or Indian Oceans.

Chapel, ‘RapidQ,” to accelerate the calculation of spectral variability
over large areas (next section), spectral bands, and multispectral space
(Bachman et al. 2023). Units of Rao’s Q were relative to the input im-
agery; however, we did not compare imagery to imagery (only imagery
to fish diversity), so the units were irrelevant to this study.

2.5. Spectral variability within windows

We computed Rao’s Q on defined subsets, hereafter ‘windows,’ of
remote sensing imagery centered at each station where fish had been
counted. Iterative variation of window size allowed the SVH to be tested
at different spatial scales. We computed Rao’s Q within windows
encompassing areas of 50, 25, 10, 5, 1, and 0.5 hectares (ha) for our WV-
2 multispectral imagery, windows with 25, 10, 5, 1, 0.5, and 0.1 ha for
our WV-2 panchromatic imagery, and windows with 0.005, 0.001,
0.0005, 0.0001, 0.00005, and 0.00001 ha for our finest resolution UAV-
acquired imagery. Each of the six windows across datasets encompassed
a similar ratio of pixels to window size. For example, the smallest WV-2
and UAV windows, 0.5 and 0.00001 ha, were comprised of 780 and 510
pixels, respectively.

Although there were no previous studies correlating fish diversity to
spectral variability for us to base our window sizes on, there was evi-
dence of fish responding to habitat diversity at large windows (50-300
ha; Dalleau et al. 2010; Olds et al. 2012; van Lier et al. 2018; Hale et al.

2019; Sievers et al. 2020; Bakker et al. 2024). The time to run the Rao’s
Q calculator, however, scaled with the square of the window size, and
due to usage policies on our supercomputing cluster, we were unable to
run any computations that took longer than twelve hours of walltime.
Our largest window size (50 ha) reflected this limitation. The smallest
window sizes for each imagery were large enough to incorporate a 10-
pixel radius around the dive stations.

As previously described, the fish counts were conducted along
transects. Hence, each count did not have a unique geographic position.
To account for the area encompassed by each diver measurement, we
calculated spectral variability from five randomized points within a
radius of 15 m, centered on the mid-point of the 30 m transects along
which the SCUBA divers had counted the fish. This approach allowed
error to be estimated for spectral variability.

2.6. Correlating spectral variation with fish diversity

Using a Moran’s I spatial autocorrelation test, we confirmed that
variations in fish richness and Shannon’s diversity were not a product of
the spatial distribution of the SCUBA stations. We then performed linear
correlation tests to evaluate the relationships between fish richness and
Shannon’s diversity, as measured at the 223 KSLOF-GRE and 27 GLTMP
stations, with spectral variability computed from WV-2 (multispectral +
panchromatic) and UAV imagery (raw + fluid lensed). Because of the
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Fig. 3. An example from Tumon Bay, Guam, showing the spectral variability (Rao’s Q) calculated from four types of remote sensing imagery: WorldView-2 ([a] five
multispectral bands + [b] one panchromatic band) and FluidCam (three [c] raw + [d] fluid lensed bands). Rao’s Q was calculated for the smallest 0.01 ha window
on the (e¢) WV-2 multispectral image, and 0.001 ha for the (f) WV-2 panchromatic image and (g-h) two fluid lensing images. Both FluidCam heat maps (g-h) were
magnified to resolve the fine-scale changes in spectral variability. The 0.01 and 0.001 ha windows corresponded to an area of 100 and 10 sq. m, respectively.

differences in how the fish were counted by KSLOF and GLTMP, we
evaluated the SVH separately for the two datasets.

Correlation tests were repeated for Rao’s Q calculated within each of
our six window sizes for each of the four remote sensing datasets. While
more complex regressions were available to us, we deliberately chose a
linear relationship as this was the first experiment to test the SVH for
reef fish. In future work, more complex (non-linear, machine learning,
etc.) approaches might be taken. A significance level (alpha) of 0.01 was
chosen to evaluate these correlation tests when our sample size was
>100 (KSLOF-GRE). We adjusted the significance level to 0.05 for tests
with sample sizes <100 (GLTMP). Correlation coefficients were assessed
to determine which window size, remote sensor, and fish diversity
metric correlated most strongly with spectral variation.

2.7. Fish family response to spectral variability

To tease apart how the SVH performed for fishes with different life
strategies, we grouped our fish counts into herbivores (parrotfish,
damsels, and tangs), benthic carnivores and corallivores (butterflyfish,
squirrelfish, wrasse), and piscivores (grunts and grouper), then indi-
vidually correlated those groupings against spectral variability. The
range of window sizes afforded by our satellite data encompassed a large
enough area to accommodate the various home ranges of these fish
families (Almany et al., 2007; Green et al., 2015). We did not relate fish
counts to UAV-derived spectral variability because the windows were
too small to encompass a meaningful home range for the fish.

3. Results
3.1. A global reef fish and remote sensing dataset
Our SCUBA diver datasets were collected along a global transect

through the Indian, Pacific, and Atlantic Oceans, with a broad range in
fish species richness and Shannon’s diversity measured at each of the

223 KSLOF-GRE and 27 GLTMP stations (Fig. 2). Of the 250 stations
which we considered, four remote sensing technologies (WV-2 satellite
multispectral and panchromatic, and fluid lensed and raw UAV imagery)
could be assembled over 27 stations. Multispectral and panchromatic
satellite data covered 112 stations, and 223 stations were solely imaged
by multispectral satellite data (Fig. 2a). The richness and Shannon’s
diversity of fish were highest in the Indian and Pacific Oceans (Fig. 2b
and c) relative to that measured in the Atlantic Ocean (Fig. 2d). Our 250
dive stations were paired with each of the corresponding remote sensing
datasets (Fig. 1), and the spectral variability from the imagery sur-
rounding that station was calculated.

3.2. Rao’s Q as a measure of spectral variability

We provided an example to display the differences in calculating
Rao’s Q from our four datasets (Fig. 3). Here, we showed the spectral
variability in the forereef of Tumon Bay in Guam (Fig. 3a-d) within a
0.01 ha window for WV-2 multispectral imagery and a 0.001 ha window
for the other three datasets. Rao’s Q measured the ‘spectral dissimilarity’
in an image and was therefore scaled to the spectral values and bands in
that image. In this example, the highest Rao’s Q values were obtained
from the UAV data, which were stored as digital numbers, compared to
the lower Rao’s Q from reflectance values in WV-2 data. In the raw UAV
imagery, waves and sun glint corresponded to areas with high Rao’s Q
(Fig. 3g; Rao’s Q > 60). Otherwise, high Rao’s Q corresponded to the
edges between spectrally dissimilar benthic habitats, respectively for
each image.

3.3. Spectral variability correlated with fish diversity

For each of our four image datasets, we calculated spectral vari-
ability within six different window sizes and correlated those results
with fish richness and Shannon’s diversity (Table 1). First, we examined
the global KSLOF-GRE stations (Table 1a). The strongest positive
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Table 1
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Correlations between fish diversity and spectral variability from four imagery across our (a) KSLOF-GRE and (b) GLTMP stations. Results are shown for computing
spectral variability within window sizes ranging from 0.5-50 ha for WorldView-2 (WV-2) multispectral imagery, 0.1-25 ha for WV-2 panchromatic imagery, and
0.00001-0.005 ha for UAV imagery, with a total of 223, 112, and 27 stations, respectively. Correlation coefficients (R) were provided for the relationship between
spectral variability with both reef fish richness and Shannon’s diversity. Significance levels indicated difference from zero and bolded for *** 0.0001,/0.0005, ** 0.001/
0.005, and * 0.01/0.05, while ns = not statistically significant. Window sizes where correlations were both bolded and underlined were carried forward for further

analysis.

a Khaled bin Sultan Living Oceans Foundation Global Reef Expedition
WorldView-2 multispectral (n = 233)

Window (ha) Richness (R) Shannon’s (R)

WorldView-2 panchromatic (n = 112)

Window (ha) Richness (R) Shannon’s (R)

0.5 0.20** 0.18*
1 0.24%** 0.21*
5 0.36%** 0.30%**
10 0.38%** 0.33%**
25 0.37%*** 0.34**

50 0.36***

0.1 0.05 (ns) 0.13 (ns)
0.5 0.10 (ns) 0.25%

1 0.15 (ns) 0.31*

5 0.30* 0.43%**
10 0.31** 0.44%**
25 0.26* 0.41%**

b Guam Long-term Coral Reef Monitoring Program
WorldView-2 multispectral (n = 27)

Window (ha) Richness (R) Shannon’s (R)

WorldView-2 panchromatic (n = 27)

Window (ha) Richness (R) Shannon’s (R)

0.5 —0.04 (ns) —0.33 (ns)
1 —0.03 (ns) —0.31 (ns)
5 0.07 (ns) —0.16 (ns)
10 0.30 (ns) 0.03 (ns)
25 0.33 (ns) 0.14 (ns)
50 0.30 (ns) 0.14 (ns)

Raw UAV imagery (n = 27)

0.1 0.06 (ns) —0.19 (ns)
0.5 0.21 (ns) —0.19 (ns)
1 0.13 (ns) —0.20 (ns)
5 0.24 (ns) 0.05 (ns)
10 0.32 (ns) 0.14 (ns)
25 0.30 (ns) 0.19 (ns)

Fluid lensed UAV imagery (n = 27)

Window (ha) Richness (R) Shannon’s (R)

Window (ha) Richness (R) Shannon’s (R)

0.00001 0.08 (ns) 0.36 (ns)
0.00005 0.09 (ns) 0.33 (ns)
0.0001 0.11 (ns) 0.33 (ns)
0.0005 0.11 (ns) 0.33 (ns)
0.001 0.12 (ns) 0.30 (ns)
0.005 0.11 (ns) 0.27 (ns)

0.00001 0.40* 0.01 (ns)
0.00005 0.42* —0.11 (ns)
0.0001 0.43* —0.16 (ns)
0.0005 0.45* ~0.25 (ns)
0.001 0.45* —0.24 (ns)
0.005 0.48* —0.18 (ns)

relationship between fish richness and WV-2 multispectral variability
was found using the 10-ha window (R = 0.38), which was only slightly
more positive than the strongest correlation to Shannon’s diversity of
fish at a 25-ha window (R = 0.34). When computing spectral variability
from WV-2 panchromatic imagery, the strongest relationship to fish
richness was found using the 10-ha window (R = 0.31). For Shannon’s
diversity, meanwhile, the strongest result was returned at the same
window size (R = 0.44).

Tested next were the relationships between spectral variability and
fish diversity from the 27 GLTMP stations in Tumon Bay. Regardless of
window size, no significant relationships to either fish richness or
Shannon’s diversity were found when spectral variability was computed
using WV-2 multispectral, WV-2 panchromatic, or raw UAV imagery.
Neither were any significant relationships found when correlating
Shannon’s diversity of fish with spectral variability of fluid lensed im-
agery. However, the strongest positive relationship across all of our tests
(KSLOF-GRE and GLTMP) was found when correlating fish richness with
fluid lensed imagery within the 0.005 ha window (R = 0.48, Table 1b).
For the remainder of our analysis, we used the combination of fish di-
versity metrics and sensor type that delivered the strongest correlations
(bolded and underlined in Table 1).

Fig. 3 split the KSLOF-GRE fish counts into three depth bins: Depth 1
(<13 m), D2 (13-15.5 m), and D3 (>15.5 m). When spectral variability
was computed from multispectral WV-2, the strongest correlations occur
in the shallowest bin (R = 0.47 with fish richness, and 0.39 for Shan-
non’s diversity of fish; Fig. 4a). The deepest depth bin returned the
lowest correlation in both cases. No significant correlations were
returned from D1 when the same experiment was conducted for the
panchromatic WV-2 imagery (Fig. 4b), and the highest correlations were
found in D3 with fish richness (R = 0.51) and Shannon’s diversity of fish
(R =0.56).

Next, we showed the correlation between fish richness and spectral
diversity calculated from fluid lensed data (Fig. 5). Although all window

sizes for this test produced significant correlations (Table 1b), the largest
0.05 ha window returned the highest correlation (R = 0.48). There were
no significant correlations when using Shannon’s diversity of fish, or
when calculating spectral variability from the raw UAV data. Also, the
27 GLTMP stations did not provide satisfactory statistical power to test
the effect of depth on correlation strength.

3.4. Correlation strength is dependent on fish feeding strategy

Our final analysis examined whether the SVH extracted from WV-2
multispectral imagery was effected by splitting our fish counts into
three functional groups. The correlation strength for all fish groups
within windows sized 0.01 to 50 ha was shown as a red dashed line in
Fig. 6a, where the herbivores were shown in green, benthic carnivores
and corallivores in blue, and piscivores in orange. The correlation
strength between both herbivores and corallivores and spectral vari-
ability peaked at windows ranging from 0.5 to 50 ha, while the pisci-
vores showed peak correlations at a much narrow range, between 0.5 to
1 ha (Fig. 6b). Parrotfish, butterflyfish, and grunts had their strongest
positive correlations to spectral variability at 0.5 ha, while those
strongest correlations were at 50 ha for wrasse, tangs, and damselfish.
Only grouper and tangs exhibited negative correlations to spectral
variability.

4. Discussion

The spectral variability hypothesis (SVH) provides a means of
upscaling biodiversity assessments with remote sensing. Whereas the
SVH has traditionally focused on terrestrial landscapes, it evidently can
also be applied to seascapes. We demonstrated that fish diversity was
positively correlated with spectral variation. Sensor type and the size of
the window in which spectral variation was calculated, however, were
important determinants in the strength of our correlations. These
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b WorldView-2 panchromatic imagery

L] ‘ HiH— T

Ry, = 0.38*** (N = 223) 10 Ry, =0.31** (N=112)
R,, = 0.47*** (n=62) R,, =0.47 (ns) (n=30)
®R, =035 (n=78) =R,=0.19(ns) (n=41)
°R,,=0. 37*** (n=83) =R, =0.56"** (n=41)
0 l 0 \ | |
0 200 400 600 0 40 80 120
Spectral variability at 25 ha
3.5 T 1
3.0
c
@0
"ge': 25
G
2 2.0
2
(0]
>
T 1.51% 1.5+ -
2 ® ] "
8 [ ]
S 1.0 1.0 -
ﬁ Rpa = 0.34™* (N = 223) Rpa = 044 (N =112)
05L Ry, =0.39"  (n=62) 0501 Ry, =0.37 (ns) (n=30) |
) eR_,=0.38*** (n=78) ) u RD2 =0.45* (n=41)
*R, =025 (ns) (n=83) =R, =051* (n=41)
0.0 | 0.0 | | |
0 200 400 600 0 40 80 120

Spectral variability at 25 ha

Spectral variability at 25 ha

Fig. 4. Correlation plots showing the relationship between spectral variability to fish richness and Shannon’s diversity for KSLOF-GRE stations. These results used the
window sizes that delivered the strongest correlations for (a) WorldView-2 (WV-2) multispectral (10 and 25 ha, circles) and (b) panchromatic (10 ha, squares)
imagery. Points colored by one of three depth classes (D1 is < 13 m, D2 is 13-15.5 m, and D3 > 15.5 m), with correlation strength (R) given for each. Error bars
represented spectral variation around the center dive station, and for five random points within a 15-m radius. In all cases, correlation coefficients were significant
and positive. The strongest relationship was between WV-2 panchromatic and Shannon’s diversity of fish at D3 (>15.5 m).

nuances have also been discussed as being crucial when applying the
SVH for terrestrial ecosystems (Torresani et al. 2018, 2024; Wang et al.
2018; Wang and Gamon 2019; Fassnacht et al. 2022), so we also unpack
them below for coral reefs.

4.1. Pixel size matters

We pulled from three spatial scales of remote sensing imagery. At the
coarse end, WV-2 had a 2.5 m resolution for its multispectral channels
and 0.5 m for its panchromatic one. Fluid lensed images, with 0.014 m
pixels, was finer in scale by a factor of 100. It was fair to say that the
multispectral WV-2 data captured the arrangement of seabed ‘habitat,’
while panchromatic WV-2 data, and, to an even greater degree,

FluidCam, captured intra-habitat variability. The strongest correlations
to fish diversity we found were delivered by panchromatic and Fluid-
Cam imagery (Table 1, R = 0.44). This result insinuated that the SVH
was upheld when spectral variation was captured at the intra-habitat
scale. To understand this outcome, it was necessary to consider how
an image of a coral reef was abstracted as its pixel size increased.
Sub-meter resolution images of reefs capture the spatial arrangement
of individual coral colonies and the shadows that they cast. The 0.014 m-
resolution of FluidCam even started to image the reef as it might have
been experienced by a diver in the water, or a fish utilizing the habitat
that it provided (Fig. 3d). In remote sensing terms, coral colonies (and
their shadows) approximated to what ecologists often refer to as
‘rugosity,” which a multitude of studies showed that reef fish respond to
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Fig. 5. Correlation plot showing the relationship between spectral variability
from unpiloted aerial vehicle (UAV) fluid lensed imagery and fish richness
across the GLTMP stations. Error bars represented the spectral variation around
the center dive station, and for five random points within a 15-m radius. The
strongest correlation was delivered by the largest 0.005 ha window size. No
significant correlations were found between Shannon’s diversity of fish and
either the raw or the fluid lensed UAV data.

(Mazel et al. 2003; Gratwicke and Speight 2005; Purkis et al. 2006,
2008; Kobryn et al. 2013; Darling et al. 2017; Wedding et al. 2019; Foo
et al. 2021; Hall and Kingsford 2021).

Though the scale jump from 0.014 m FluidCam and 0.5 m WV-2
panchromatic to 2.5 m WV-2 multispectral might not have seemed
drastic, any semblance of rugosity was lost. Spectral variability at the
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WV-2 multispectral scale was mediated by the arrangement of benthic
habitats —i.e., ecological communities, such as ‘coral habitat,” ‘seagrass,’
‘sand habitat,” etc (Bakker et al. 2024). Although the seabed was no
longer being measured at the scale of individual coral colonies, we still
found fish diversity to be correlated with WV-2 multispectral variability,
and at large window sizes, but our interpretation of the SVH at this scale
was fundamentally different as compared to the cm-scale FluidCam
imagery.

The literature advocated, however, that the relationship between
fish and habitat was more nuanced than that between fish and rugosity.
A handful of studies, for instance, showed that fish might have respon-
ded to habitat at WV-2 scale (Purkis et al. 2008; Yeager et al. 2011;
Chong-Seng et al. 2012; Darling et al. 2017; Richardson et al. 2017;
Bakker et al. 2024), but the direction and strength of those relationships
varied. And, at these scales, habitat arrangement may have become
homogenized within larger pixels, so that other environmental charac-
teristics, instead, would be more important in structuring fish commu-
nities (Hewitt et al. 1998; Sale 1998; Holbrook et al. 2002). Cast in this
way, it was hardly surprising that the strongest relationships which we
found between spectral variability and fish (R = 0.44-0.48) were
delivered at sub-meter scale.

4.2. The Spectral Variability Hypothesis weakens with increasing water
depth

Basic physics decrees that light is exponentially attenuated with
increasing water depth. Even more so, spectral diversity, while possibly
present on the benthic surface at depth, is itself a function of depth
owing to the differential attenuation of longer wavelengths of visible
light in water. This attenuation sets a practical limit for passive remote
sensing submerged targets in the visible spectrum of approximately 25
m (Purkis and Klemas 2011). So, a logical hypothesis for the strong
correlations between fish and spectral variability were that they were
depth dependent. Whereas the Guam FluidCam dataset was too small to
offer meaningful statistical power, the KSLOF-GRE offered ample scope
to test this simple hypothesis.

The KSLOF-GRE fish counts were conducted between water depths of
0-18 m, and our strongest correlations (R = 0.47 and 0.39) occurred in
the shallowest depth bin (<13 m) when spectral variability was
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Fig. 6. The relationship between spectral variability with herbivores (green), benthic carnivores/corallivores (blue), and piscivores (orange) (a) was given for a
range of windows sized from 0.01 to 50 ha. The red dashed line represented all fish families grouped together. The window size which delivered the peak correlations
were shown in the box-and-whisker plot (b). Piscivores were most strongly correlated to spectral variability across a narrow range of windows whereas the window

sizes with peak correlations varied much more for herbivores and corallivores.



A.C.B. Bakker et al.

computed from multispectral WV-2 imagery. The deepest bin returned
the weakest correlation for these multispectral data. For WV-2
panchromatic data, however, the deepest depth bin returned the
strongest correlation (0.56 and 0.51). This result was confusing, and
arbitrating the effect of depth on panchromatic data was challenging
because the band spans visible and infrared wavelengths, thereby
encompassing a broad disparity in the attenuation of light by water.
While it has been shown that accuracy of classifying benthic habitats
from imagery decreases with increasing water depth (Lucas and
Goodman 2014; Garcia et al. 2018), a phenomenon termed ‘spectral
confusion,” no such information existed for the influence of depth on
calculating Rao’s Q values for the SVH. Although beyond the scope of
this study, we encourage future research to investigate whether applying
water-column corrections to remote sensing data enhances or un-
dermines the effectiveness of the SVH as a proxy for reef fish biodiver-
sity. Another suggestion is to trial the effect of pansharpening on
correlation strength to further disentangle the relationship between fish
and spectral information.

4.3. Fluid lensing outperformed raw UAV data

Unlike WV-2, the fluid lensing data offered the opportunity to correct
for the light field projected onto the seabed by the lensing effect of ocean
waves (caustics), magnification and demagnification of ocean wave
lenslets, and reflective effects of ocean waves (Chirayath and Li 2019).
This focused, reflected, and refracted sunlight did not originate from the
seabed and therefore might be considered as noise in any computation of
spectral diversity, particularly because water is dispersive, causing
different wavelengths of refracted downwelling light to focus on
different depths. Applying airborne fluid lensing, UAV data were
explicitly corrected for all these effects (Fig. 3¢ vs. d). Our strongest
correlations between spectral variability and fish were realized when
using the fluid lensed data, and no relationships were found with the raw
imagery. This finding has important implications for the use of spectral
variability from any remote sensing system that does not correct for
refractive distortions, caustics, or dispersion. However, we acknowledge
that the dataset we used to produce these results was small. Our findings
cannot necessarily be extrapolated to other reefs. This said, at our sites,
acquisition of UAV data with fluid lensing clearly paid dividends in the
retrieval of fish biodiversity.

4.4. The Spectral Variability Hypothesis worked for some fish better than
others

We attempted to tease apart the relationship between fish and their
surrounding spectral diversity by splitting fish into herbivores, cor-
allivores, and piscivores. Peak correlations for herbivorous fish spanned
window sizes from 0.5 to 50 ha, perhaps reflecting the variety of ranges
that encompassed the life stages of herbivorous fish. For example, some
surgeonfish (tangs) and parrotfish aggressively defend their breeding or
feeding territories that are only 1-20 m across, while some unicornfish
(also tangs) range up to 1 km (Green et al. 2015). The butterflyfish
exhibited the strongest correlations at <0.5 ha windows, which could
have been due to the fact that some species (e.g., clownfish and but-
terflyfish) exhibit self-recruitment behavior where their larvae disperse
over distances as little as 10 m (Almany et al., 2007). We also found
piscivores to have stronger correlations within smaller windows,
potentially because these are ambush predators. Their feeding behavior
is to sit and wait in one area. The variability we saw between the win-
dow sizes which delivered the peak correlations for specific fish families
highlighted the value of incorporating habitat diversity and connectivity
into conservation planning, because, even though we included site-
attached damsels and butterflyfish, the box-and-whisker plots in
Fig. 6b suggested that the fish were responding to spectral signatures
over half a kilometer away (50 ha windows).
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5. Conclusion

We demonstrated the applicability of the spectral variability hy-
pothesis in marine environments using WorldView-2 multispectral and
panchromatic and UAV imagery. The positive correlations between
spectral variability and fish diversity showed the potential for remote
sensing to upscale biodiversity assessments, especially with imagery
processed with fluid lensing corrections. The resolution of the imagery
also impacted the strength of those correlations, with smaller pixels
generally yielding stronger relationships. We also found the effective-
ness of the SVH to vary with water depth and for different fish feeding
strategies, indicating the need for a tailored approach to apply this hy-
pothesis depending on the management goal. Our findings support a
broader utilization of remote sensing in marine biodiversity
conservation.
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